The Spectrocat team :

Spectroscopy and Catalysis for Innovation

Laboratoire Catalyse & Spectrochimie

History and roots of Spectrocat

The Spectrocat team has its roots in the history of the Laboratoire Catalyse & Spectrochimie. The latter was founded in 1978 by the merger of the Laboratoire de Catalyse, directed by François Gault, and the Laboratoire de Spectrochimie.

Under the direction of Jean-Claude Lavalley, the laboratory rapidly became a world reference. It specializes in infrared spectroscopy applied to catalysis.

Worldwide recognition

The LCS has distinguished itself by developing innovative methods for using infrared spectroscopy to analyze catalytic materials.

Back in the 1980s, Jacques Saussey, a teacher-researcher at the laboratory, introduced in situ IR spectroscopy. He applied it to the study of reacting catalysts in catalytic reactors. This approach, later known as operando spectroscopy, has strengthened the LCS’s position as an international leader in this field.

In 2000, NMR and Raman spectroscopy were added to the laboratory’s spectroscopic techniques. The operando method was rapidly extended to include these new approaches, enriching analysis and observation capabilities under real-life conditions.

Expertise and Technological Development

Understanding catalysis at the molecular level

One of the main aims of the Spectrocat team is to understand and control heterogeneous catalysis at the molecular level. To this end, the team develops and optimizes spectroscopic tools for characterizing :

  • Diffusion and reaction kinetics,
  • The nature and role of active sites (Brøntsed or Lewis acid sites, metal sites, redox sites),
  • Reaction intermediates and catalyst deactivation.

Real-time spectroscopy

Catalysts are analyzed under continuous flow conditions typical of their use. Thanks to real-time quantitative spectroscopy and the use of an operando methodology, it is possible to precisely describe the reaction mechanisms and propose avenues of improvement for new generations of more efficient and sustainable catalysts.

These methodologies are also being extended to studies of gas adsorption and separation, opening the way to new applications in a variety of industrial fields.

Recent Developments

The Spectrocat team, in collaboration with leading academic and industrial groups, has developed several tools and methodologies, including :

  • Spectroscopy operando (IR, Raman, UV-Vis) for thermal catalysis, plasmas, photocatalysis, gas separation and adsorption,
  • Temporal and spatial resolution: 2D-IR methodology, IR-laser coupling, etc,La résolution temporelle et spatiale : méthodologie 2D-IR, couplage IR-lasers, etc,
  • Coupled techniques: IR-Raman, IR-gravimetry, IR-DSC,
  • Analysis automation and development of multi-sample tools.
  • Data analysis and interpretation (2D-COS, 2D-FFT, maximum entropy, spectral inversion, PCA, chemometrics in general, development of spectral analysis software via Python (Spectrochempy), machine learning…).

For the NMR platform, advances are focused on:

  • Increased sensitivity and resolution thanks to the use of hyperpolarized Xenon,
  • Coupling with crystallographic methods and Density Functional Theory (DFT) .

Applications of Developed Technologies

Areas of application for Spectrocat technologies and methodologies include :

  • Energy: production, transport and storage of clean fuels (H2), biomass processing,
  • Environment: waste reduction, pollution control and CCUS (Carbon Capture, Utilization and Storage) technologies,
  • New concepts: emerging applications in various industrial sectors.

Catalysts studied

The team’s research focuses on a wide variety of catalysts:

  • Zeolite and porous materials (MOFs)
  • Metal oxides
  • Supported metals
  • Sulfide catalysts

Publications

Active sites for HDS on (Pt,Co)MoS2 catalysts are also active for HER reaction: A proof of concept

L.A. Zavala-Sanchez, X. Portier, F. Maugé, L. Dubau, L. Oliviero

Catalysis Today 445 (2025) 115020.

Catalytic oxidative desulfurization of liquid fuel: Impact of oxidants, extracting agents, and heterogeneous catalysts with prospects for biodiesel upgrading – A mini review
A. Guntida, D.S.S. Jorqueira, C. Nikitine, P. Fongarland, K. Thomas, F. Maugé, J. Aparicio

Biomass and Bioenergy 188 (2024) 107341.

Highly defective ultra-small tetravalent MOF nanocrystals 
S. Dai, C. Simms, G. Patriarche, M. Daturi, A. Tissot, T.N. Parac-Vogt, C. Serre

Nat Commun 15 (2024) 3434.

IF 32.086
Room Temperature Reduction of Nitrogen Oxide on Iron Metal–Organic Frameworks
M. Daturi, V. Blasin‐Aubé, J.W. Yoon, P. Bazin, A. Vimont, J. Chang, Y.K. Hwang, Y. Seo, S. Jang, H. Chang, S. Wuttke, P. Horcajada, M. Haneda, C. Serre

Advanced Materials (2024) 2403053.

Accessibility in Liquid Media: Cyclodehydration of Hexane-2,5-Diol for the Evaluation of Layered Catalysts
M. Zaarour, G. Fayad, P. Boullay, G. Clet

Advanced Materials Interfaces 9 (2022) 2101692.

Ultrasmall Copper Nanoclusters in Zirconium Metal-Organic Frameworks for the Photoreduction of CO 2

S. Dai, T. Kajiwara, M. Ikeda, I. Romero-Muñiz, G. Patriarche, A.E. Platero-Prats, A. Vimont, M. Daturi, A. Tissot, Q. Xu, C. Serre

Angew Chem Int Ed 61 (2022).

MOFs with Open Metal(III) Sites for the Environmental Capture of Polar Volatile Organic Compounds
M.I. Severino, A. Al Mohtar, C. Vieira Soares, C. Freitas, N. Sadovnik, S. Nandi, G. Mouchaham, V. Pimenta, F. Nouar, M. Daturi, G. Maurin, M.L. Pinto, C. Serre

Angew Chem Int Ed 62 (2023).

Tunable Wettability of a Dual-Faced Covalent Organic Framework Membrane for Enhanced Water Filtration

F. Benyettou, A. Jrad, Z. Matouk, T. Prakasam, H.I. Hamoud, G. Clet, S. Varghese, G. Das, M. Khair, S.K. Sharma, B. Garai, R.G. AbdulHalim, M. Alkaabi, J. Aburabie, S. Thomas, J. Weston, R. Pasricha, R. Jagannathan, F. Gándara, M. El-Roz, A. Trabolsi

J. Am. Chem. Soc. 146 (2024) 23537–23554.

Selective Photocatalytic Dehydrogenation of Formic Acid by an In Situ -Restructured Copper-Postmetalated Metal–Organic Framework under Visible Light

H. Issa Hamoud, P. Damacet, D. Fan, N. Assaad, O.I. Lebedev, A. Krystianiak, A. Gouda, O. Heintz, M. Daturi, G. Maurin, M. Hmadeh, M. El-Roz

J. Am. Chem. Soc. 144 (2022) 16433–16446.

Reverse oxygen spillover triggered by CO adsorption on Sn-doped Pt/TiO2 for low-temperature CO oxidation

J. Chen, S. Xiong, H. Liu, J. Shi, J. Mi, H. Liu, Z. Gong, L. Oliviero, F. Maugé, J. Li

Nat Commun 14 (2023) 3477.

/!\ Work In Progress /!\

Projets

BioCAR

LCS – CORIA
2015
– 2018
A comprehensive study of biofuels: biofuel composition, engine performance and emissions
region;feder;cnrs
region;feder;cnrs
This project is co-funded by the European Union and the EMC3 labex, to the tune of €352073, of which €162513 comes from the ERDF.

BioSyngOP

IRCELyon – LCS – USTL
2011
– 2014
Conversion of contaminated syngas into methane and hydrocarbons under operando conditions.
anr
anr
This project is funded by the French National Research Agency (ANR) to the tune of €495,040 as part of the BLANC 2011 funding programme.

CaeSAR

CNRS – CEA – UNICAEN – ENSICAEN et al.
2023
– 2029
Caen Strategy for Advancement in Research : Developing scientific areas of excellence with international visibility
region;france2030
region;france2030
Funded in equal parts by France 2030 and the Normandy Region to the tune of €21,600,000, including €10,800,000 from the PIA.

DRUID

LCS
2014
– 2019
Create an analytical device for detecting short-lived reaction intermediates
feder;region;labexemc3
feder;region;labexemc3
This project is co-financed by the European Union and the Normandy region to the tune of €130,480.

EcoHdoc

LCS – UCCS – LACCO
Deoxygenation of oils from the pyrolysis of lignocellulosic biomass – Saving hydrogen and limiting deactivation
anr;feder
anr;feder
This project is funded by the Agence Nationale de la Recherche to the tune of €673,897 and the ERDF.

H2CO2

LCS – CRISMAT
2020
– 2022
Study non-noble metal photocatalysts for selective dehydrogenation
region;feder;cnrs
region;feder;cnrs
This project is co-financed by the European Union and the Normandy Region to the tune of €149,850.

HEI

LCS
Enabling innovative syntheses of zeolites, from crystal growth to final applications
feder;region
feder;region
The project is being funded by the European Union and the Normandy Region to the tune of €558,000.

Nanoclean Energy

LCS – Total
2019
– 2024
Developing molecular sieves that are stable and active in harsh environments, to convert, store and purify natural gas
anr;region;total
anr;region;total
This project has a total budget of €2 million, half of which is being provided by TOTAL and the other half by the ANR.

SIRCO

LCS
Time-resolved IR spectroscopy for the photocatalytic reduction of CO2-SIRCO
region;feder;evonik
region;feder;evonik
This project is co-financed by the European Union and the Normandy Region, in partnership with Evonik.

ZeoXY

LCS – ISTCT
2015
– 2017
Use of zeolites as vehicles for gaseous reoxygenation therapies in glioblastoma
Region;Feder;CNRS
Region;Feder;CNRS
This project is co-financed by the European Union and the Normandy Region to the tune of €264,000 (including €106,000 from the ERDF) for the period from February 2015 to August 2017 inclusive.

The SpectroCat team

Azzolina Jury Federico

AZZOLINA JURY Federico

Senior Lecturer
 

Key words:

non-thermal plasmas; carbon dioxide; IR spectroscopy; methane

Spectrocat team has been studying the relative new field of catalysis assisted by non-thermal plasmas during the last decades. Spectrocat team has largely contributed to the understanding of the interaction between cold plasmas and heterogeneous catalysts through the observation of species being generated at the catalyst surface by using IR spectroscopy (in situ and operando) during plasma-assisted reactions. Spectrocat team has conceived different sorts of IR-plasma cells to be operated under partial vacuum as well as the first IR-DBD plasma cell in literature, capable to work under atmospheric pressure. Spectrocat team has also been devoted to the optimization of plasma-assisted chemical reactors using different kinds of plasmas (glow discharge, Dielectric Barrier Discharge…). LCS has synthesized and prepared several efficient catalysts for different plasma-assisted CO2 valorization reactions for the production of valuable chemicals.

ADAZDAZD
azdazd
dadzdzad

BAZIN Philippe

Research engineer - SST
 

Key words:

In situ and operando methodologies, IR spectroscopy

Development of spectroscopic tools and in situ and operando methodologies to understand the functioning of a material/catalyst at the molecular scale and determine the reaction mechanisms involved. The processes studied concern the after-treatment of gaseous emissions from mobile sources (catalytic converter) or stationary sources (plant discharge), air quality improvement, and the adsorption, separation and diffusion of molecules. The main thrusts of IR tool development are:
1) to get closer to the actual physical conditions under which materials are used (temperature, pressure, fluid mechanics, etc.),
2) to get closer to the shaped catalyst (from powder to monolith),
3) to increase the sensitivity of analyses to obtain the maximum amount of qualitative and quantitative information on the mechanism (multi-technique coupling, isotope exchange, temporal and spatial resolutions, transient reaction, multi-sample cells, automation, etc.) and
4) develop research themes in new areas (photo-catalysis, plasma, microwave, ion bombardment, solid/liquid catalysis, ...).

Blasin-Aube Vanessa

BLASIN-AUBE Vanessa

Research Associate
 

Key words:

In situ and Operando IR spectroscopy, Catalysis, Pollution control

I am a research associate within the Spectrocat team, where my work focuses on the characterization of metal oxides and nanomaterials using in situ and operando infrared (IR) spectroscopy. My primary goal is to understand, at the molecular level, the behavior of these materials and elucidate the reaction mechanisms involved. My research has specifically addressed the post-treatment of gaseous emissions, whether from mobile sources, such as NOx traps for catalytic converters, or stationary sources, such as the degradation of volatile organic compounds (VOCs). These studies aim to contribute to the improvement of air quality.

Clet Guillaume

CLET Guillaume

Professor | Director of the laboratory
 

Key words:

Operando Raman spectroscopy, Materials characterization, CCUS, Acidity

Owing to its complementarity with IR spectroscopy, Raman spectroscopy finds naturally its place at LCS. The studies carried out in the laboratory aim at an extended characterization par by Raman spectroscopy of materials, catalysts and adsorbents, of a very diverse nature, such as oxides and lamellar oxides, MOFs or zeolites. Our approach intends to develop de characterization methodologies both in ambient conditions and in operating conditions (operando), casually by couplings with other spectroscopies. In these various aspects, quantitative mesurements are often favoured. Beyond the study of gas phase reactions, our studies also imply the development of Raman measurements in more severe conditions, at high temperature, under pressure or in the liquid phase, with notable applications for separation, storage or conversion of environmental molecules such as CO2.

Daturi Marco

DATURI Marco

Professor
 

Key words:

operando, catalytic mechanisms, pollution control, CCUS

My research activities focus on the study of catalytic mechanisms with a view to designing new catalysts. They are mainly developed in the fields of environmental protection (elimination of gaseous pollutants), production of energy carriers (hydrogen by reforming, WGS, photocatalysis; methanol; formic acid; ammonia; ...) and CO2 capture and hydrogenation (adsorption; methanation, methanolization, syngas, ...). Understanding the catalytic site and its arrangement within solids (oxidic or porous) is at the heart of my investigations, which is why I favor the operando approach and its development (time-resolved analyses, including on shaped materials).

El Roz Mohamad

El ROZ Mohamad

Research Director
 

Key words:

Photocatalysis

The quest to understand and fine-tune the properties of matter, at the molecular level, has led to groundbreaking innovations that shape our modern world. While traditional spectroscopic techniques provide invaluable insights into materials, time-resolved (TR) techniques emerge as a prominent for monitoring processes occurring on time scales ranging from milliseconds to femtoseconds. The principal aim of our research pursuits is the investigation of diverse photo-physical and chemical processes inherent to photocatalytic reactions, using complementary spectroscopic approaches (in-situ, operando, and TR (IR, Photoluminescence, Absorption transient) spectroscopies). The information on the excited state life-times, energy transfers and the reaction intermediates and mechanisms hold substantial value in our endeavor to conceive novel photocatalysts and photoactive materials for ultimately catalyzing the efficient conversion of light into chemical energy.

Kouvatas Cassandre

KOUVATAS Cassandre

Senior Lecturer
 

Key words:

solid-phase NMR, combined NMR/DRX/DFT, energy materials, Diffusion

My areas of research are mainly focused on the study of materials using NMR, coupled with crystallographic studies and DFT calculations. I'm also interested in the development of new methodologies in the laboratory, notably linked to NMR spectroscopy. Working mainly on the structural and architectural study of porous zeolite-type catalysts, my activity also focuses on various types of materials for different fields of application (anionic conductors, cellulose-based phase-change materials). The nuclei studied can be classical (e.g.  1H, 13C, 29Si, 27Al) or more specific, exotic or complex (e.g.  17O, 71Ga, 129Xe). Experiments are set up according to the structural question posed, and instrumentation adapted to the system studied (conventional CP/MAS probes, hyperpolarized 129Xe, pulsed field gradient NMR, or access to the TGIR network for high fields or DNP).

Maugé-Françoise

MAUGÉ Françoise

Research Director
 

Key words:

H2 production, biomass valorization, catalysis, adsorption, IR spectroscopy in situ and operando

Our research takes place in the context of sustainable development, and focuses on hydrogen production, biomass valorization for fuel and chemical production, and waste oil recovery. Knowledge of phenomena at interfaces is essential to enhance the performance of catalysts and adsorbents. Hence, based on our skills in in situ and operando infrared spectroscopy, we aim to obtain structure-activity relationships to determine the nature of active sites and reaction mechanisms, in order to establish bases for the rational design of catalysts and adsorbents.

avatar-3814049_640

OLIVIERO Laetitia

Professor
 

Key words:

sulfide catalysts, IR spectroscopy, TOF, structure-activity relationship

My research focuses on heterogeneous catalysis, mainly oxidation and catalysis in the presence of sulfur. The common thread running through my work is the identification of catalyst active sites and the criteria (nature, strength, concentration, metal-support interaction, etc.) that explain the activities measured, as well as deactivation phenomena. I have thus extended the CO adsorption methodology followed by IR spectroscopy to obtain a fine speciation of the active sites of sulfide catalysts by distinguishing the M and S edge sites of the sheets and their promotion rate. This advance, coupled with the characterization of sulfide sheet morphology by dark-field microscopy, has enabled us to establish structure-activity relationships in hydrodesulfurization. My current research focuses on sulfide catalysts for H2 production via the Water Gas Shift reaction or electrocatalysis of water. These topics build on previous results and methodological developments (IR operando for sulfide catalysts, characterization of sulfides on non-oxide supports).

Frédéric-THIBAULT-STARZYK_avatar_1458140474

THIBAULT-STARZYK Frederic

Research Director
 

Key words:

infrared methodology, time resolution, non-thermal activation (plasma, microwave, laser…), zeolites, probe molecules

Chemical reaction or adsorption sites on solid surfaces are a major key to understanding how our environment works, or to improving industrial processes. On model solids such as zeolites or silicas, infrared spectroscopy enables a very detailed study of these phenomena, notably by using probe molecules.
In situ or operando spectroscopy can be applied in novel ways to provide new information and help understand the surface chemistry of solids. The energy input to the chemical system can be provided by short pulses, or pulses that are very well controlled in time, to access a relevant time scale for molecular events (ms, µs or even ns). Microwaves, plasmas or lasers can be used to control the reactions studied by spectroscopy to describe the elementary stages of chemical reaction on the surface of catalysts.

Thomas Karine

THOMAS Karine

Senior Lecturer
 

Key words:

Biomass, solid-liquid ATR, catalytic purification, adsorption

The valorisation of biomass for the production of fuels and chemicals is undergoing rapid development. Most of these processes are carried out in a liquid medium and involve a solid as catalyst or adsorbent. Knowledge and control of phenomena at solid-liquid interfaces are essential to enhance the performance of heterogeneous catalysts and adsorbents. Drawing on our analytical skills in infrared and Raman spectroscopy and our experience in catalytic and/or adsorptive purification of liquids from fossil or biomass sources, we are developing infrared techniques (solid-liquid ATR, etc.) suited to the study of these chemical phenomena.

Arnaud-TRAVERT_avatar_1454503997

TRAVERT Arnaud

Professor
 

Key words:

operando IR, chemometrics, adsorption, catalysis

Arnaud Travert is Professor at University of Caen Normandy. His research activities focus on the study of the surface properties of metal oxides and zeolites by IR spectroscopy of adsorbed probe molecules, IR operando spectroscopy and chemometrics/machine learning methods. In particular he develops and use multivariate methods for the analysis of in situ or operando IR spectra and the quantitative assessment of key thermo-kinetic parameters involved in catalytic processes, in particular internal diffusion rates, adsorption thermodynamic parameters and surface reaction rate constants. He applies these methods to catalytic or adsorption processes, such as cracking reactions, transformation of bio-alcohols, CO2 capture or hydrogenation.

Vicente-Aurélie

VICENTE Aurélie

Senior Lecturer
 

Key words:

Solid state NMR, Porous materials, Structure, Hyperpolarized Xenon

Within our laboratory of catalysis and spectrochemistry, my research activities focus on the study of porous materials and their use in catalysis. More specifically, I'm interested in using solid-state Nuclear Magnetic Resonance (NMR) to further our knowledge of the structure and catalytic behavior of these materials.
In addition to providing information on the structure and dynamics of porous materials (via nuclei such as 29Si, 27Al, 1H, 17O...), solid-state NMR can also be used to study interactions between adsorbed molecules and catalyst active sites via in situ and operando techniques.
Moreover, the NMR of hyperpolarized xenon-129 (HP 129Xe) is an advanced technique that enables high sensitivity and increased resolution of NMR experiments. It provides detailed information on pore size, channel connectivity and adsorption site distribution, which is essential for the use of these materials in applications such as catalysis, but also gas separation…

vimont

VIMONT Alexandre

Research engineer
 

Key words:

In-Situ FTIR, Quantification, Acidity, Diffusion

Development of methods for qualitative and quantitative evaluation of hydroxyl groups and acid sites in zeolites, Metal-Organic-Frameworks (MOFs) and metal oxides by in situ infrared spectroscopy coupled or not with thermogravimetric analysis.
In situ & Operando Infrared Spectroscopy determination of kinetic and thermodynamic parameters during adsorption of hydrocarbon molecules in microporous materials.

Scroll to Top

Ingénieur de Recherches CNRS

 

Développement de méthodes d’évaluation qualitatives et quantitatives des groupements hydroxyles et des sites acides de zéolithes, de Metal-Organic-Frameworks (MOFs) et d’oxydes métalliques par spectroscopie infrarouge in situ couplée ou non à l’analyse thermogravimétrique.

 

Formation :

 

  • Doctorat, Chimie (2000) Université de Caen Normandie

Etude des mécanismes de désactivation de catalyseurs en cours de fonctionnement  par spectroscopie infrarouge in situ et operando

   

  • Habilitation à diriger des recherches (2008) Université de Caen Normandie

Analyses quantitatives et qualitatives des sites d’adsorption à la surface de catalyseurs et d’adsorbants par adsorption de molécules sonde suivie par spectroscopie infrarouge.

Directeur de Recherche CNRS

CARRIERE

 

  • 2020-     Adjoint au Directeur Scientifique Référent du CNRS pour les sites Lorraine et Champagne-Ardenne
  • 2016-20 Directeur de la Maison française d’Oxford, CNRS-Ministère de l’Europe et des Affaires Etrangères-Université d’Oxford
  • 2012-16 Directeur du Laboratoire Catalyse et Spectrochimie, CNRS, ENSICAEN-Université de Caen
  • 2009 Directeur de Recherche CNRS
  • 2003-04 Mis à disposition à l’Université de Cambridge (UK), groupe de Science des Surfaces avec David King, sur un fellowship de Churchill College
  • 1994 Chargé de Recherche CNRS
  • 1992-94 Post-doctorat avec Pierre A. Jacobs (Katholieke Universiteit Leuven, Belgique), bourse Marie Curie.
  • 1992 Doctorat de Chimie Organique à Caen, avec Didier Villemin, sur une bourse de l’Agence Nationale de Recherche sur le SIDA (ANRS).

 

DOMAINES ET MOTS-CLÉS

 

Catalyse Hétérogène, spectroscopie infrarouge, chimie résolue en temps, chimie des surfaces et interfaces, zéolithes, silice, matériaux micro et mésoporeux

FAITS MARQUANTS ET RECOMPENSES

  • Senior Associate, Pembroke College Oxford, 2017-21
  • Président du Groupe Français des Zéolithes 2009-2014
  • Trésorier de la Federation of European Zeolite Associations 2014
  • Lauréat du first Toyota Call en 2007
  • French Government Fellow, Churchill College, Cambridge, 2004
  • Prix de la Division Catalyse de la Société Chimique de France en 2000
  • 120 articles à comité de lecture, 25 conférence invités internationales, 1 livre, 3 chapitres, 1 brevet
  • Comité de l’International Conference on Operando Spectroscopy 2000-2016
  • Président de l’Internat. Conference on Operando Spectroscopy, OperandoV, Deauville (FR), May 2015

View all my publications on HAL

 

PRESENT POSITION

  • CNRS senior scientist [Directrice de recherche au CNRS – Classe exceptionnelle]
  • Laboratoire Catalyse et Spectrochimie (Caen, France)
  • ENSICAEN  – 6, bd Maréchal Juin – 14050 Caen – France
  • Tel : 33 (0)2 31 45 28 24 – email : francoise.mauge[at]ensicaen.fr

 

PROFESSIONAL EXPERIENCE

  • 2014-2018      Head of the group « Catalysis for Energy and Chemistry» at LCS.
  • 2011 – 2014     Scientific Director of the Research Center of ENSICAEN
  • Since 2003      CNRS senior scientist at Laboratory Catalysis and Spectrochemistry (Caen, France)
  • 1986-2002      CNRS Researcher at Laboratory Catalysis and Spectrochemistry (Caen, France)
  • 1985                  Engineer at Philips Composants, Caen
  • 1981-1984      PhD thesis at the IRCELYON (supervisor Pierre Gallezot), LyonEDUCATION
  • 1989                  Research Supervision Qualification (Habilitation à Diriger des Recherches), Caen (France)
  • 1984                  PhD in Physical Chemistry, Lyon (France)
  • 1981                   Graduate of the “Institut National des Sciences Appliquées de Lyon” (INSA), Materials Physics Section, Lyon (France)
  • 1981                   Master of Materials Physics, University of Lyon I (France)

 

MAIN RESEARCH FIELD

  • Catalysts for clean fuel production (hydrotreatment, hydrodrocracking, hydrodeoxygenation, FCC, ..), from fossil and biomass sources
  • Catalysts for hydrogen production
  • In situ and operando infrared spectroscopy for adsorbents and catalysts (sulfide, oxide, zeolite and metal)
  • Structure-activity relationship

 

PUBLICATION and COMMUNICATION

  • H factor = 37
  • 137 Publications in peered reviewed journals, 3 book chapters, 2 Patents
  • About 50 plenary conferences, key notes and invited lectures.
  • About 180 communications (92 oral and 88 poster) in international and national conferences

 

PhD SUPERVISION

PhD supervision:       28

 

Research Administration

  • Member of International Association of Catalysis Society for France, from 2020
  • Member of the DivCat of the Societé Chimique de France, from 2015.President of the Scientific Council of LCS (Caen), 2016-2018
  • Member of the National Committee of CNRS for coordination chemistry, catalysis, interfaces and processes – section 14 (2012 – 2016)
  • Director of the Research of ENSICAEN (Research Institute with 7 laboratories about 650 researchers)  (2011 – 2014)
  • Member of the scientific council of ENSICAEN (2018-2021, 2011 – 2014 ), Member of the scientific council of  the University of Caen (2011 – 2014), Member of the administrative council of ENSICAEN (2011 – 2014)
  • Member of the Scientific council of Chemistry Department of CNRS (2006-2010)

 

Main responsabilities in scientific projects

  • Scientific coordinator of several projects between LCS (Caen) and national and international industrial as well as academic partners mainly on structure activity relationship on catalysts for Hydrodeoxygenation, Hydrotreatment, Hydrocracking, Fischer tropsch, Biomass upgrading.
  •  Main editor of the special issue of Catalysis Today “Catalysis by sulfides ad related materials” (published in 2021 – 22 papers)
  •  Main organizer of the international conference on “Molecular Aspects of Catalysis by Sulfides (MACS VIII) – Cabourg (France) – May 2019
  •  Coordinator of the research group « Catalysis for Energy and Chemistry » at LCS (Caen) – about 15 researchers, PhD and post-doctorate students – 2003-2018
  •  Coordinator of the project CO2 VIRIDIS, LCS (Caen), CORIA (Rouen), LOMC (LE Havre), LSPC (Rouen) – Regional Council support –  about 15 researchers – 2014-2017
  • Coordinator of the project Biocar, LCS (Caen), CORIA (Rouen) – EMC3 Labex support – about 13 researchers – 2014-2017
  • Coordinator of the ANR EcoHdoc “Hydrodeoxygenation of 2nd generation Biofuels”, 4 partners, 2007-2010
  •  Deputy coordinator of the ANR Basicat “Basicity of oxides with controlled morphologies”, 4 partners, 2006-2008

 

Scientific activity : Plasma-Catalysis
Projects :

– GENCOMM (INTERREG): http://www.nweurope.eu/projects/project-search/gencomm-generating-energy-secure-communities/

– PIONEER (ITN): https://www.co2pioneer.eu/

– CO2 Viridis (RIN)

Parcours professionnel

 
  • 2017 Professeur. Enseignement : UFR Sciences – Université de Caen Recherche : Laboratoire Catalyse et Spectrochimie (LCS) – ENSICAEN
  • 2001 Maître de Conférences. Enseignement : UFR Sciences – Université de Caen Recherche : Laboratoire Catalyse et Spectrochimie (LCS) – ENSICAEN
  • 02/2000-12/2000 Post-doctorant. Schuit Institute of Catalysis, TU Eindhoven. Modélisation de catalyseurs sulfures. Dir. : Prof. R.A. van Santen.
  • 10/1997-01/2000 Doctorant. Laboratoire Catalyse et Spectrochimie. Université de Caen – ISMRA. Etude de l’acidité de Catalyseurs Sulfures Supportés. Dir : F. Maugé (DR CNRS). Diplômes universitaires.
  • 2011 Habilitation à Diriger des Recherches – Université de Caen-Basse Normandie “Etudes de Catalyseurs Sulfures” – Dir. F. Maugé (DR CNRS)
  • 2000 Doctorat (Spécialité Chimie des Matériaux) – Université de Caen “Etude par Spectroscopie IR de l’acidité d’oxydes métalliques et de catalyseurs sulfures supportés – influence du sulfure d’hydrogène” – Dir. F. Maugé (DR CNRS)
  • 1996 DEA Sciences des Matériaux – Université de Caen
 

Thèmes de Recherche Actuels

 
  • Catalyse hétérogène – Spectroscopie Infrarouge ¬ Etude des propriétés acido-basiques d’oxydes et de sulfures métalliques par spectroscopie IR de molécules sondes adsorbées et modélisation ab initio des spectres IR, spectroscopie IR en conditions réactionnelles (Operando). ¬ Application aux procédés de raffinage et de pétrochimie : Hydrodésulfuration (HDS), Hydrodéoxygénation (HDO), Craquage catalytique en lit fluidisé (FCC), Valorisation de la biomasse.

Production Scientifique

 
  • 60 publications avec comité de lecture
  • 1 coordination d’ouvrage collectif (Comptes-Rendus Chimie, Vol. 12, Juin-Juillet 2009)
 

Distinctions

 
  • 2016 : Membre distingué Junior de la Société Chimique de France
  • 2012 : Prix de la Division Catalyse de la Société Chimique de France
 

Collaborations académiques et Industrielles récentes

 
  • depuis 2014 Total (Feluy, Belgique) – Etude de la déshydratation de bio-alcools
  • depuis 2013 PPG Aerospace (Bezons) – Etude de la réticulation de polysulfures – Responsable Scientifique
  • depuis 2011 Michelin (Clermont-Ferrand) – Etude d’interfaces silice – silane – Responsable Scientifique
  • 2011 – 2015 Grace Gmbh (Worms, Allemagne) – Etude de catalyseurs de FCC – Responsable Scientifique
  • 2011 – 2014 ANR Biosyngop. Valorisation du biogaz – Coordinateur local (LCS)
  • 2010 – 2013 ANR CP2D ‘Guerbet’. Valorisation de bio-alcools – Coordinateur local (LCS)
  • 2007 – 2011 ANR PNRB ‘ECOHDOC’. Désoxygénation d’huiles de pyrolyse de la biomasse.
  • 2002 – 2010 Grace Davison (Columbia, MD, USA)
  • 2009 – 2010: Consultant Scientifique.
  • 2009 : Congé de Recherches (CRCT) au Centre de Recherches de Columbia, USA.
  • 2002 – 2009 : Etude d’additifs de désulfuration – Co-responsable scientifique.
 

Organisation de colloques.

 
  • 2006-2008 Membre du Bureau du GECat – Co-organisation des Congrès GECat-DivCat de 2006 à 2008.
 

Encadrement de la Recherche

 
  • direction ou co-direction de 6 thèses soutenues, 4 thèses en cours.
  • direction de 8 post-docs (6 – 18 mois)
 

Mandats électifs

 
  • Depuis 2016 Membre de la 14eme section du Comité National de la Recherche Scientifique
  • 2011-2015 Membre de la 31eme section du CNU
  • 2003-2008 Membre de la Commission de Spécialistes de la 31° section de l’Université de Caen (2007 : 2nd vice-président).
  • 2003-2009 Membre CHS de l’Université de Caen.
  • 2003-2006 Membre du Conseil Scientifique de l’ENSICAEN.
  • 2002-2008 Membre du Conseil de Laboratoire.
 

Enseignement, participation a l’information Scientifique et Technique

 
  • Enseignement universitaire (service statutaire) :
    • Thermodynamique chimique (CM, TD, TP) : niveaux L1-L3
    • Chimie Théorique (CM, TD) : niveaux L2 à M1
    • Spectroscopie atomique et moléculaire (CM, TD) : niveaux L2-L3
    • Cinétique et Catalyse (TP): niveaux L1 et M1
  • Organisation de l’enseignement.
  • depuis 2012 : Responsable du Master 1 mention Chimie Membre élu du département de Chimie.
 

Diffusion des connaissances.

 
  • 2011-2015 : Organisation de ~ 50 conférences/an dans des lycées de Basse-Normandie dans le cadre du GRES (Groupe de Réflexion sur L’Enseignement des Science,)