Contactez-nous! +33 (0)2 31 45 28 21
lcs@ensicaen.fr
  • Français
Laboratoire Catalyse et SpectrochimieLaboratoire Catalyse et SpectrochimieLaboratoire Catalyse et SpectrochimieLaboratoire Catalyse et Spectrochimie
  • Who are we?
  • Research at LCS
    • Publications
    • EDRF Projects
    • ANR projects
    • Research at LCS
      • Spectrocat group
      • Zeolithes group
    • News
    • Lab activities and organization
    • Education
    • The doctoral and postdocs blog
    • History
  • Technical platforms
    • Catalytic Tests & Chemisorption Platform
    • VISIO platform
    • Solid State NMR platform
      (NMR center of Caen-Normandy)
    • Synthesis & Characterization Platform
  • Industrial partnership
  • Contact us!
    • Work at the lab
    • Contact us!
    • Laboratory staffs
    • LCSValoris serving companies
Next Previous

Soutenance de thèse : Maxime Debost

15 October 2019

Abstract

11/18/2019 – 10:00  AM – CNRT 2nd Floor

Keywords: Chabazite, CO2 adsorption, CO2 In-situ PXRD, PEDT, Nanozeolites, OSDA-free.

The goal of this work is to prepare template-free small pore nanosized zeolites. The direct synthesis of nanosized CHA and RHO type zeolites without organic structure directing agents provided materials with a Si/Al ratio suitable for the separation of CO2 from CH4. The first part of this study concerns the development of a new synthetic route towards preparation of small pore nanozeolites from water clear precursor suspensions. The nanocrystals have a diameter of 30 – 200 nm and a Si/Al ratio of 1.4 to 2.6. The second part is dedicated on the crystallographic analysis of the RHO and CHA nanosized zeolites in hydrated and dehydrated forms. Precession electron diffraction tomography (PEDT) and in-situ powder XRD methods were used to characterize the structure of the newly synthesized materials with nanosized dimensions. The third part of the thesis includes the adsorption studies of CO2 and CH4 in the CHA and RHO nanosized zeolites. The high selectivity of the zeolite nanocrystals synthesized with different cations (Cs, Na, K) towards CO2 in the presence of CH4 is demonstrated.

Copyright 2021 - Laboratoire Catalyse & Spectrochimie - Directeur de publication : Guillaume CLET | Creative Commons 4.0 International
  • Français
Laboratoire Catalyse et Spectrochimie
Login

Lost your password?

Reset Password

Log in