Contactez-nous! +33 (0)2 31 45 28 21
lcs@ensicaen.fr
  • Français
Laboratoire Catalyse et SpectrochimieLaboratoire Catalyse et SpectrochimieLaboratoire Catalyse et SpectrochimieLaboratoire Catalyse et Spectrochimie
  • Who are we?
  • Research at LCS
    • Publications
    • EDRF Projects
    • ANR projects
    • Research at LCS
      • Spectrocat group
      • Zeolithes group
    • News
    • Lab activities and organization
    • Education
    • The doctoral and postdocs blog
    • History
  • Technical platforms
    • Catalytic Tests & Chemisorption Platform
    • VISIO platform
    • Solid State NMR platform
      (NMR center of Caen-Normandy)
    • Synthesis & Characterization Platform
  • Industrial partnership
  • Contact us!
    • Work at the lab
    • Contact us!
    • Laboratory staffs
    • LCSValoris serving companies
Next Previous

Nanoparticles-induced inflammatory cytokines in human plasma concentration manner: an ignored factor at the nanobio-interface

26 July 2014

by Nicolin Tirtaatmadja, Gysell Mortimer, Eng-Poh Ng, Hacan Ali Ahmad, Svetlana Mintova, Vahid Serpooshan, Rodney F. Minchin, Morteza Mahmoudi

13738_011_004

Journal : Journal of the Iranian Chemical Society

DOI : 10.1007/s13738-014-0486-7

Abstract :

Properties of nanoparticles (NPs) are responsible for their interaction with various biomolecules such as proteins in biological environments. Amount and composition of the proteins associated with NPs, i.e. protein corona, are strongly dependent on physicochemical characteristics of the particles, as well as incubation parameters including temperature and protein concentration. More importantly, the protein corona can define the biological fate of the NPs. Here, we demonstrate that variations in the concentration of plasma protein led to significant changes in the composition of the hard corona adsorbed on the surface of different NPs including hydrophilic amorphous silica (SiO2), hydrophilic crystalline zeolite (EMT), and hydrophobic sulfonated-modified polystyrene. Alteration in the corona composition of the NPs is a result of the plasma concentration, i.e. it affects the release of inflammatory cytokines in a plasma concentration-dependent manner. The amorphous silica nanoparticles with hydrophilic surfaces induced the release of the inflammatory cytokines interleukin-8 (IL-8) and tumor necrosis factor (TNFα) in 10 % plasma concentration, but not at higher concentrations. A reverse trend was observed for the hydrophobic, sulfonated-modified polystyrene NPs. Remarkably the hydrophilic highly porous EMT NPs exhibited no cellular toxicity regardless to the plasma concentration. The results obtained in this study can be used to define optimal pathways for nanoparticles administration in vivo. These findings can assist researchers to better understand how NPs with different surface properties may interact with various proteins in vivo, and elucidate safety considerations for their biomedical applications.

Copyright 2021 - Laboratoire Catalyse & Spectrochimie - Directeur de publication : Guillaume CLET | Creative Commons 4.0 International
  • Français
Laboratoire Catalyse et Spectrochimie
Login

Lost your password?

Reset Password

Log in