Contactez-nous! +33 (0)2 31 45 28 21
lcs@ensicaen.fr
  • Français
Laboratoire Catalyse et SpectrochimieLaboratoire Catalyse et SpectrochimieLaboratoire Catalyse et SpectrochimieLaboratoire Catalyse et Spectrochimie
  • Who are we?
  • Research at LCS
    • Publications
    • EDRF Projects
    • ANR projects
    • Research at LCS
      • Spectrocat group
      • Zeolithes group
    • News
    • Lab activities and organization
    • Education
    • The doctoral and postdocs blog
    • History
  • Technical platforms
    • Catalytic Tests & Chemisorption Platform
    • VISIO platform
    • Solid State NMR platform
      (NMR center of Caen-Normandy)
    • Synthesis & Characterization Platform
  • Industrial partnership
  • Contact us!
    • Work at the lab
    • Contact us!
    • Laboratory staffs
    • LCSValoris serving companies
Next Previous

Application of Cu-FAU nanozeolites for decontamination of surfaces soiled with the ESKAPE pathogens – ScienceDirect

13 August 2017

 

by

James Redfern, Kamila Goldyn, Joanna Verran, Richard Retoux, LubomiraTosheva,  SvetlanaMintova

https://doi.org/10.1016/j.micromeso.2017.06.046

Highlights

  • Preparation of copper-containing zeolite nanocrystals in stable colloidal suspensions
  • Cu-containing zeolite nanocrystals active against six ESKAPE species
  • Application of Cu-containing zeolite nanocrystals for sanitization of surfaces in healthcare settings.

Abstract

Antimicrobial resistance is a global threat with catastrophic forecasts in terms of human and economic losses. The so-called ESKAPE pathogens (Enterococcus species, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa and Enterobacter species) represent a range of species of particular concern because they cause many serious hospital infections, and can show resistance toward available commercial antibiotics. Copper-containing zeolite nanocrystals (10–30 nm) with FAU-type structure (Cu-FAU), in the form of stable colloidal suspensions, were prepared at high yield in the absence of organic templates and studied for their activity against ESKAPE microorganisms. The materials were active against all six ESKAPE species. The survival of Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa on stainless-steel coupons after direct treatment with the Cu-FAU zeolite suspensions was determined quantitatively. Complete decontamination (5-log reduction in bacterial counts) was achieved within 20 min for P. aeruginosa, and within 10 min for the K. pneumoniae and S. aureus. This result is significant, particularly for sanitization of surfaces in healthcare settings, with the potential to initiate a new direction of research to help address the global antimicrobial resistance threat.

Source : Application of Cu-FAU nanozeolites for decontamination of surfaces soiled with the ESKAPE pathogens – ScienceDirect

Copyright 2021 - Laboratoire Catalyse & Spectrochimie - Directeur de publication : Guillaume CLET | Creative Commons 4.0 International
  • Français
Laboratoire Catalyse et Spectrochimie
Login

Lost your password?

Reset Password

Log in